Airborne induction and priming of plant defenses against a bacterial pathogen.
نویسندگان
چکیده
Herbivore-induced plant volatiles affect the systemic response of plants to local damage and hence represent potential plant hormones. These signals can also lead to "plant-plant communication," a defense induction in yet undamaged plants growing close to damaged neighbors. We observed this phenomenon in the context of disease resistance. Lima bean (Phaseolus lunatus) plants in a natural population became more resistant against a bacterial pathogen, Pseudomonas syringae pv syringae, when located close to conspecific neighbors in which systemic acquired resistance to pathogens had been chemically induced with benzothiadiazole (BTH). Airborne disease resistance induction could also be triggered biologically by infection with avirulent P. syringae. Challenge inoculation after exposure to induced and noninduced plants revealed that the air coming from induced plants mainly primed resistance, since expression of PATHOGENESIS-RELATED PROTEIN2 (PR-2) was significantly stronger in exposed than in nonexposed individuals when the plants were subsequently challenged by P. syringae. Among others, the plant-derived volatile nonanal was present in the headspace of BTH-treated plants and significantly enhanced PR-2 expression in the exposed plants, resulting in reduced symptom appearance. Negative effects on growth of BTH-treated plants, which usually occur as a consequence of the high costs of direct resistance induction, were not observed in volatile organic compound-exposed plants. Volatile-mediated priming appears to be a highly attractive means for the tailoring of systemic acquired resistance against plant pathogens.
منابع مشابه
Plant defense priming against herbivores: getting ready for a different battle.
Plants have evolved various strategies to defend themselves against herbivores and pathogens. Although some of these strategies are constitutive, i.e. present at all times, others are induced only in response to herbivore feeding or pathogen infection. The induction of direct and indirect plant defenses in response to herbivory and other biotic stresses is well established (Karban and Baldwin, ...
متن کاملPipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of ino...
متن کاملA deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses.
For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the ...
متن کاملPriming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.
Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming wit...
متن کاملInduced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules
Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immuni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 151 4 شماره
صفحات -
تاریخ انتشار 2009